Affiliation:
1. Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Shaanxi Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Flexible Electronics Xi'an Key Laboratory of Biomedical Materials & Engineering Xi'an Institute of Flexible Electronics Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an Shaanxi 710072 China
2. Department of Chemistry and School of Energy and Chemical Engineering Ulsan National Institute of Science & Technology (UNIST) Ulsan 44919 South Korea
Abstract
AbstractSupramolecular multifunctional metal–organic networks offer immense potential in drug delivery, bioimaging, catalysis, and therapeutics. However, the creation of multiple stimuli‐responsive fluorescent hollow nano/microparticles is a formidable challenge in this field. In this study, a novel strategy is reported for synthesizing photochromic hollow microparticles that exhibit responsiveness to light, pH, and glutathione (GSH). With the assistance of templating coordination from zeolitic imidazolate framework‐8 microparticles, bisphosphonate‐merocyanine ligands are successfully assembled to create hollow bisphosphonate‐spiropyran (BPSP)‐Zn2+ microparticles. The photochromic and pH responses stem from the reversible conversion between spiropyran and zwitterionic merocyanine components and between merocyanine and protonated merocyanine, respectively. The GSH response is attributed to the stronger affinity of Zn2+ to thiol groups than to phosphonate groups. These remarkable features render the hollow BPSP‐Zn2+ microparticles highly suitable for applications in stimulus‐triggered drug delivery, and these findings provide a platform for developing innovative materials that have the potential to transform the biomedical field.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献