Large Optical Modulation of Dielectric Huygens’ Metasurface Absorber

Author:

Cheng Hao‐Yu123ORCID,Ye Ming‐Jyun4,Chen Wei‐Ruei4,Yang Chi‐Yin4,Chu Shi‐Wei15,Chen Kuo‐Ping46,Lin Kung‐Hsuan2ORCID

Affiliation:

1. Department of Physics National Taiwan University No. 1, Sec. 4, Roosevelt Rd. Taipei 106319 Taiwan

2. Institute of Physics Academia Sinica No. 128, Sec. 2, Academia Rd., Nangang Dist. Taipei City 115201 Taiwan

3. Nano‐Science and Technology Program, Taiwan International Graduate Program Academia Sinica No. 128, Sec. 2, Academia Rd., Nangang Dist. Taipei City 115201 Taiwan

4. College of Photonics National Yang Ming Chiao Tung University No.301, Sec.2, Gaofa 3rd Rd. Tainan City 71150 Taiwan

5. Brain Research Center National Tsing Hua University 101, Section 2, Kuang‐Fu Road Hsinchu 300044 Taiwan

6. Institute of Photonics Technologies National Tsing Hua University 101, Section 2, Kuang‐Fu Road Hsinchu 300044 Taiwan

Abstract

AbstractHigh‐index nanostructures are found to exhibit large nonlinearity of spectral responses under photoexcitation, which is applicable to all‐optical modulation. The nonlinearity stems from Mie‐type resonance shift due to photoinduced variation of refractive index. Here, amorphous silicon‐based Huygens’ metasurface absorber and ultrafast excitation are used to demonstrate two orders of magnitude enhancement of modulation depth, both theoretically and experimentally, when electric dipole lattice resonance matches the magnetic dipole resonance. Within a few square micrometer spatial confinement and picosecond scale delay, over 100% photothermal modulation depth is experimentally achieved at matched resonance condition. This concept is not limited to photothermal modulation in the amorphous silicon but is applicable to dielectric materials with various mechanisms to achieve modulation of refractive index. This work opens the avenue toward all‐optical information processing via optimized modulation by careful spatiotemporal and spectral control over a metasurface.

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3