In‐Plane Selective Area Epitaxy of InAsSb Nanowire Networks for High‐Performance Scalable Infrared Photodetectors

Author:

Wen Lianjun1,Liu Lei1,He Fengyue12,Zhuo Ran1,Hou Xiyu12,Pan Dong12,Zhao Jianhua12ORCID

Affiliation:

1. State Key Laboratory of Superlattices and Microstructures Institute of Semiconductors Chinese Academy of Sciences P.O. Box 912 Beijing 100083 China

2. College of Materials Science and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China

Abstract

AbstractCMOS‐compatible III–V semiconductor nanowire infrared photodetectors have attracted extensive research interest in various fields such as Si photonics and gas sensors. However, the traditional vertical configuration of nanowires limits their applications at the circuit level. Here, an in‐plane selective area epitaxy route is developed to grow large‐scale InAsSb nanowire networks on patterned Si substrates. By precisely tuning the growth parameters, the well‐aligned InAsSb nanowire networks with good selectivity are successfully achieved. Detailed structural studies confirm that there is a sharp interface between the InAsSb nanowire and the substrate. On the basis of optoelectronic measurements, it is confirmed that the fabricated InAsSb nanowire network photodetectors exhibit a low dark current density (≤2 mA cm−2) and a wide spectral response (1200–1650 nm) at room temperature, covering the important telecommunication bands. Moreover, these devices present a high on‐off ratio, large responsivity, high detectivity, and rapid response speed at zero bias voltage. At the illumination wavelength of 1200 nm, the on‐off ratio, responsivity, detectivity, and response time of a double nanowire networks photodetector can reach 2680, 286.9 mA W−1, 1.4 × 1010 Jones and 75.3 µs, respectively. This work offers a straightforward approach to in situ fabricating high‐performance scalable nanowire photodetectors.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association

Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3