Unlocking Optical Coupling Tunability in Epsilon‐Near‐Zero Metamaterials Through Liquid Crystal Nanocavities

Author:

Lio Giuseppe Emanuele12ORCID,Ferraro Antonio3,Zappone Bruno3,Parka Janusz4,Schab‐Balcerzak Ewa5,Umeton Cesare Paolo36,Riboli Francesco27,Kowerdziej Rafał4,Caputo Roberto368

Affiliation:

1. Physics Department University of Florence Sesto Fiorentino Florence 50019 Italy

2. European Laboratory for non Linear Spectroscopy (LENS) Sesto Fiorentino Florence 50019 Italy

3. Consiglio Nazionale delle Ricerche ‐ Istituto di Nanotecnologia (CNR‐Nanotec) Rende CS 87036 Italy

4. Institute of Applied Physics Military University of Technology 2 Kaliskiego Str. Warsaw 00‐908 Poland

5. Centre of Polymer and Carbon Materials Polish Academy of Sciences 34 M. Curie‐Sklodowska Str. Zabrze 41‐819 Poland

6. Physics Department University of Calabria Arcavacata di Rende CS 87036 Italy

7. National Institute of Optics CNR‐INO Sesto Fiorentino FI 50019 Italy

8. Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China

Abstract

AbstractEpsilon‐near‐zero (ENZ) metamaterials represent a powerful toolkit for selectively transmitting and localizing light through cavity resonances, enabling the study of mesoscopic phenomena and facilitating the design of photonic devices. In this experimental study, it demonstrates the feasibility of engineering and actively controlling cavity modes, as well as tuning their mutual coupling, in an ENZ multilayer structure. Specifically, by employing a high‐birefringence liquid crystal film as a tunable nanocavity, the polarization‐dependent coupling of resonant modes with narrow spectral width and spatial extent is achieved. Surface forces apparatus (SFA) allowed to continuously and precisely control the thickness of the liquid crystal (LC) film contained between the nanocavities and thus vary the detuning between the cavity modes. Hence, it is able to manipulate nanocavities anti‐crossing behaviors. The suggested methodology unlocks the full potential of tunable optical coupling in epsilon‐near‐zero metamaterials and provides a versatile approach to the creation of tunable photonic devices, including bio‐photonic sensors and/or tunable planar metamaterials for on‐chip spectrometers.

Funder

Ministero degli Affari Esteri e della Cooperazione Internazionale

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3