Pyramidal Hyperbolic Metasurfaces Enhance Spontaneous Emission of Nitrogen‐Vacancy Centers in Nanodiamond

Author:

Zheng Peng12,Liang Le13,Arora Saransh1,Ray Krishanu45,Semancik Steve2,Barman Ishan167ORCID

Affiliation:

1. Department of Mechanical Engineering Johns Hopkins University Baltimore MD 21218 USA

2. Biomolecular Measurement Division Material Measurement Laboratory National Institute of Standards and Technology Gaithersburg MD 20899 USA

3. The Institute of Advanced Studies Wuhan University Wuhan 430072 P. R. China

4. Institute of Human Virology University of Maryland School of Medicine Baltimore MD 21201 USA

5. Department of Biochemistry and Molecular Biology University of Maryland School of Medicine Baltimore MD 21201 USA

6. Department of Oncology Johns Hopkins University School of Medicine Baltimore MD 21287 USA

7. The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore MD 21287 USA

Abstract

AbstractNitrogen‐vacancy (NV) centers in nanodiamond hold great promise for creating superior biological labels and quantum sensing methods. Yet, inefficient photon generation and extraction from excited NV centers restrict the achievable sensitivity and temporal resolution. Herein, an entirely complementary route featuring pyramidal hyperbolic metasurface is reported to modify the spontaneous emission of NV centers. Fabricated using nanosphere lithography, the metasurface consists of alternatively stacked silica–silver thin films configured in a pyramidal fashion, and supports both spectrally broadband Purcell enhancement and spatially extended intense local fields owing to the hyperbolic dispersion and plasmonic coupling. The enhanced photophysical properties are manifested as a simultaneous amplification to the spontaneous decay rate and emission intensity of NV centers. It is envisioned that the reported pyramidal metasurface can serve as a versatile platform for creating chip‐based ultrafast single‐photon sources and spin‐enhanced quantum biosensing strategies, as well as aid in further fundamental understanding of photoexcited species in condensed phases.

Funder

National Institute of Standards and Technology

National Institute of General Medical Sciences

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3