Topological States Decorated by Twig Boundary in Plasma Photonic Crystals

Author:

Li Jianfei1ORCID,Yao Jingfeng123,Wang Ying123,Zhou Zhongxiang123,Lan Zhihao4,Yuan Chengxun123ORCID

Affiliation:

1. School of Physics Harbin Institute of Technology Harbin 150000 P. R. China

2. Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology Harbin 150000 P. R. China

3. Heilongjiang Provincial Innovation Research Center for Plasma Physics and Application Technology Harbin 150001 P. R. China

4. Department of Electronic and Electrical Engineering University College London Torrington Place London WC1E 7JE U. K.

Abstract

AbstractThe twig edge states in graphene‐like structures are viewed as the fourth states complementary to their zigzag, bearded, and armchair counterparts. In this work, a rod‐in‐plasma system in a honeycomb lattice with twig edge truncation under external magnetic fields and lattice scaling is studied and it is shown that twig edge states can exist in different phases of the system, such as quantum Hall (QH) phase, quantum spin Hall (QSH) phase, and insulating phase. The twig edge states in the negative permittivity background exhibit robust one‐way transmission properties immune to backscattering and thus provide a novel avenue for solving the plasma communication blackout problem. Moreover, it is demonstrated that corner and edge states can exist within the shrunken structure by modulating the on‐site potential of the twig edges. Especially, helical edge states with the unique feature of pseudospin‐momentum locking that can be excited by chiral sources are demonstrated at the twig edges. These results show that the twig edges and interface engineering can bring new opportunities for more flexible manipulation of electromagnetic waves.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3