Excitonic Degradation Mechanisms in Phosphorescent and Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes

Author:

Jiang Jixin12,Jang Ho Jin2,Lee Kyung Hyung2,Lim Junseop2,Kim Jae‐Min2,Zhao Suling1,Lee Jun Yeob234ORCID

Affiliation:

1. Key Laboratory of Luminescence and Optical Information Institute of Optoelectronics Technology Beijing Jiaotong University Beijing 100044 China

2. School of Chemical Engineering Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon‐si Gyeonggi‐do 16419 Republic of Korea

3. SKKU Advanced Institute of Nano Technology Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon‐si Gyeonggi‐do 16419 Republic of Korea

4. SKKU Institute of Energy Science and Technology Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon‐si Gyeonggi‐do 16419 Republic of Korea

Abstract

AbstractIn this study, the degradation mechanisms of triplet exciton harvesting organic light‐emitting diodes (OLEDs), namely, phosphorescent OLEDs and thermally activated delayed fluorescence (TADF) OLEDs, are investigated. Two common green emitters, fac‐tris(2‐phenylpyridine) iridium (III) (Ir(ppy)3) and 1,2,3,5‐tetrakis(carbazol‐9‐yl)‐4,6‐dicyanobenzene (4CzIPN), are doped in an exciplex‐forming cohost, and their degradation processes are comprehensively evaluated using various analytical approaches. Triplet–triplet‐annihilation induces the formation of defects, such as charge traps and exciton quenchers, triggering luminance loss during the device aging process of Ir(ppy)3‐based phosphorescent OLEDs. Electron trapping‐induced triplet‐polaron annihilation and narrow emission zone severely impair the device stability of 4CzIPN‐based TADF OLEDs, despite limited material degradation and charge trap formation.

Funder

Ministry of Trade, Industry and Energy

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3