Fully Discrete VO2 Particulate Film with Ultra‐High Transmittance and Excellent Thermochromic Performance

Author:

Li Bin1,Tian Shouqin1ORCID,Zhou Longxiao1,Wu Senwei1,Ma Tingfeng1,He Guanjie23,Liu Baoshun1,Zhao Xiujian1

Affiliation:

1. State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology (WUT) No. 122, Luoshi Road Wuhan 430070 P. R. China

2. Christopher Ingold Laboratory Department of Chemistry University College London London WC1H 0AJ UK

3. Electrochemical Innovation Lab Department of Chemical Engineering University College London London WC1E 7JE UK

Abstract

AbstractVanadium dioxide (VO2) has attracted widespread attention due to its extraordinary thermochromic properties. Visually transparent VO2 films hold great promise for applying in smart windows, smart radiative coolers, solar cells, and microwave absorbing windows. However, it remains a huge challenge to simultaneously achieve ultra‐high luminous transmittance (Tlum) and excellent thermochromic performance due to their contradictory relationship. Here, a fully discrete VO2 particulate (FDVP) film is developed. It shows an ultra‐high Tlum of 92.7% due to the reflectance being significantly reduced. Below the phase transition temperature (Tc, 69.1 °C), it is highly transparent to near‐infrared (NIR) light, while above Tc, it blocks NIR light through the strong localized surface plasmon resonance (LSPR) effect, resulting in an excellent solar energy modulation (ΔTsol) of 10.5% for smart windows. In addition, a 3.5 at.%W‐doped FDVP film exhibits a desired Tc of 25.8 °C, an extremely narrow hysteresis width (ΔT) of 4.6 °C, and good optical properties (Tlum = 92.0%, ΔTsol = 8.2%). The performance represents a new milestone for thermochromic VO2 films. This work will shed light on the structural design for high‐performance VO2 films.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

National Basic Research Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3