Phthalocyanine‐Based 2D Polymer for Ultrafast Nonlinear Optical Application

Author:

Liu Fang1,Guan Zihao1,Wei Zhiyuan1,Fu Lulu1,Fang Yan1,Shan Naying1,Zhao Yang1,Huang Zhipeng1,Humphrey Mark G.2,Zhang Chi1ORCID

Affiliation:

1. China‐Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China

2. Research School of Chemistry Australian National University Canberra ACT 2601 Australia

Abstract

AbstractStrong ultrafast nonlinear optical (NLO) responses in near‐infrared (NIR) regions and favorable solution processability are two urgent requirements for practical NLO applications, especially for optical limiting (OL) applications. However, simultaneously optimizing these properties remains significant challenging. In this study, the successful synthesis of a phthalocyanine‐based 2D polymer (Pc‐2DP) is reported; its structure features extended π‐electrons delocalization space constructed by topologically integrating the phthalocyanine units into the 2D framework. The as‐prepared few‐layered Pc‐2DP not only exhibits power‐ and wavelength‐dependent NLO properties toward 35 fs ultrafast pulsed laser, but it also demonstrates excellent ultrafast reverse saturable absorption (RSA) responses in NIR regions. The nonlinear absorption coefficients of Pc‐2DP dispersion reach up to 0.12 and 0.19 cm GW−1 at 800 and 1550 nm, respectively, which are much higher than those of the typical MXene (Ti3C2TX) and molybdenum disulfide with hexagonal structure (2H‐MoS2). The obtained NLO devices exhibit remarkable OL performance at 800 nm and, particularly, in the telecommunication region (1300 to 1550 nm), which is highly desired but seldom reported. The study demonstrates that the as‐prepared Pc‐2DP featuring a highly conjugated aromatic framework is a very promising OL material and that this research provides a new strategy for developing high‐performance 2D organic NLO polymers.

Funder

National Natural Science Foundation of China

Ministry of Education of the People's Republic of China

Australian Research Council

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3