Nonlinear Dielectric Epsilon Near‐Zero Hybrid Nanogap Antennas

Author:

Tirole Romain1,Tilmann Benjamin2ORCID,Menezes Leonardo de S.23,Vezzoli Stefano1,Sapienza Riccardo1ORCID,Maier Stefan A.14

Affiliation:

1. The Blackett Laboratory Department of Physics Imperial College London London SW7 2BW UK

2. Chair in Hybrid Nanosystems Nanoinstitut München Ludwig‐Maximilians‐Universität München 80539 München Germany

3. Departamento de Física Universidade Federal de Pernambuco Recife‐PE 50670‐901 Brazil

4. School of Physics and Astronomy Monash University Clayton Victoria 3800 Australia

Abstract

AbstractHigh‐index Mie‐resonant dielectric nanostructures provide a new framework to manipulate light at the nanoscale. In particular their local field confinement together with their inherently low losses at frequencies below their bandgap energy allows to efficiently boost and control linear and nonlinear optical processes. Here, nanoantennas composed of a thin indium‐tin oxide (ITO) layer in the center of a dielectric gallium phosphide (GaP) nanodisc are investigated. While the linear response is similar to that of a pure GaP nanodisc, it is shown that second harmonic generation is enhanced across a broadband wavelength range. On the other hand, third harmonic generation is only marginally enhanced around the epsilon‐near‐zero wavelength of ITO. Linear and nonlinear finite‐difference time‐domain simulations show that despite the high refractive index contrast leading to strong field confinement inside the antenna's ITO layer, the nanogap enhancement effect is mitigated by the low nonlinear volume of the nanogap layer and the antenna's behavior at the harmonic wavelength. Measurement of ITO and GaP nonlinear susceptibilities additionally show a comparative advantage for harmonic generation in GaP. These investigations deliver insights on the mechanisms at play in nonlinear nanogap antennas and their potential applications as nanoscale devices.

Funder

Deutsche Forschungsgemeinschaft

Solar Technologies go Hybrid

Center for NanoScience, Ludwig-Maximilians-Universität München

Engineering and Physical Sciences Research Council

Leverhulme Trust

Centre of Excellence in Future Low-Energy Electronics Technologies, Australian Research Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Second harmonic generation at a time-varying interface;Nature Communications;2024-09-05

2. Roadmap on photonic metasurfaces;Applied Physics Letters;2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3