Plasmonically‐Enhanced Radioluminescence Induced by Energy Transfer in Colloidal CsPbBr3 Nanocrystals via Hybridization of Silver Nanoparticles

Author:

Jeon Gi Wan12,Cho Sangeun1,Park Sunjung1,Kim Do Wan1,Jana Atanu1,Park Dong Hyuk34,Kwak Jungwon5,Im Hyunsik1,Jang Jae‐Won12ORCID

Affiliation:

1. Department of Physics and Semiconductor Science Dongguk University Jung‐gu Seoul 04620 South Korea

2. Quantum‐functional Semiconductor Research Center Dongguk University Seoul 04620 Republic of Korea

3. Department of Chemical Engineering Inha University Incheon 22212 Republic of Korea

4. Program in Biomedical Science and Engineering Inha University Incheon 22212 Republic of Korea

5. Department of Radiation Oncology Asan Medical Center Seoul 05505 Republic of Korea

Abstract

AbstractNanocrystals of CsPbBr3, a colloidal perovskite, are hybridized with silver nanoparticles (Ag NPs) and organic molecules (2,5‐diphenyloxazole, PPO) to improve X‐ray radioluminescence (RL). It is known that charge transfer from the PPO molecules to the CsPbBr3 nanocrystals enhances the RL efficiency of the CsPbBr3 nanocrystals. In this study, Ag NPs are introduced to further enhance the RL efficiency. The plasmonic process of the Ag NPs is activated by the PPO molecules, which contain X‐ray‐induced high‐energy charges. Subsequently, electric fields induced by the plasmonic process of the Ag NPs accelerate the charge transfer from the PPO molecules to the CsPbBr3 nanocrystals. The plasmonic effect of the Ag NPs is demonstrated by the full‐width half maximum (FWHM): the photoluminescence FWHM of the hybridized CsPbBr3 nanocrystals is reduced, whereas the RL FWHM remains unchanged. The Ag‐NP‐induced plasmonic effect improves the RL efficiency of the PPO‐decorated CsPbBr3 nanocrystals by ≈10%. The obtained results demonstrate that a plasmonic process can strengthen the RL of X‐ray scintillators for X‐ray detection and imaging.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3