Affiliation:
1. Electrical Engineering Division Department of Engineering University of Cambridge 9 JJ Thomson Ave Cambridge CB3 0FA UK
2. School of Materials and Engineering Kumoh National Institute of Technology (KIT) 61 Daehak‐ro Gumi 39177 South Korea
Abstract
AbstractQuantum‐dot light‐emitting diodes (QD‐LEDs) have gained significant attention for next‐generation display and lighting systems owing to their superior color selectivity and color purity. To maximize the efficiency of QD‐LED devices, it is of great importance to identify the key factors that govern their electro–optical properties. The efficiency of QD‐LED devices is strongly influenced by combinatorial processes, represented by the Shockley‐Read‐Hall rate A, Langevin strength B, and Auger probability C (ABC parameters) of quantum‐dots (QDs), along with photon extraction efficiency of QD‐LED devices. In this study, an integrated computational framework is proposed to accurately analyze the electro–optical properties of QD‐LED devices. The experimental device properties are characterized by ABC and photon extraction efficiency parameters through an innovative numerical data‐fitting procedure. Utilizing these parameters, a parametric analysis is performed based on a complete computational charge transport simulation model to explore the influence of the combinatorial exciton recombination processes. This computational framework aligns excellently with experimental results, showcasing its remarkable reliability and effectiveness in both quantitatively characterizing QD nanoparticles and in the detailed analysis of the electro–optical properties of QD‐LED devices.
Funder
H2020 European Research Council
Engineering and Physical Sciences Research Council
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献