Affiliation:
1. Center for Spintronics and Quantum Systems State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
2. Shaanxi Institute for Pediatric Diseases Xi'an Children's Hospital Affiliated Children's Hospital of Xi'an Jiaotong University Xi'an 710003 China
Abstract
AbstractNeuromorphic devices that parallelize perception, preprocessing, and computation functions are expected to play a significant role in future non‐von Neumann architecture computers. Herein, a new retina‐inspired broadband self‐powered optoelectronic synaptic device based on 2D/3D heterojunction of epitaxial InSe on GaN(0001) is reported. Few‐layer n‐type InSe is grown on p‐type GaN by physical vapor deposition in an ultra‐high vacuum (UHV) environment. The devices are fabricated using a shadow mask assisted UHV electrode deposition technique. High‐resolution transmission electron microscopy images reveal that an atomically thin amorphous layer, which induces highly efficient charge trapping, is formed at the InSe/GaN interface. The photoresponse spans from visible to near‐infrared, and the response time is prolonged to 103 ms owing to the deep trapping levels. Thus, synaptic functions, including excitatory postsynaptic current, paired‐pulse facilitation with a high index of up to 170%, short‐term plasticity, and high‐pass filtering characteristics, are realized. Additionally, the synapses demonstrated the merit of realizing image sharpening and arithmetic operations on the same device under infrared and visible light illumination. This study provides a new platform of 2D/3D heterostructures for robust optoelectronic synapses that may find applications in post‐Moore era neuromorphic vision systems.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献