Affiliation:
1. State Key Laboratory of Advanced Metallurgy School of Metallurgical and Ecological Engineering University of Science and Technology Beijing Beijing 10083 P. R. China
Abstract
AbstractAs the proportion of buildings energy consumption increases, the issue of low energy utilization efficiency becomes increasingly prominent. Approximately 45% of the energy is lost through doors and windows, a significant concern that has drawn society's attention to the potential of electrochromic technology, which can regulate light transmittance and absorption effectively. Specifically, dual‐band electrochromic materials offer a promising solution to this issue, as they can manipulate the transmission ratios of visible (VIS) and near‐infrared (NIR) light to obtain “bright,” “cold,” “warm,” and “dark” independent modes. However, research on dual‐band electrochromic materials and smart windows is still infant, and many challenges including performance and assembly issues, are significant obstacles to the advancement and application of this technology. This review clarifies the basic characteristics of dual‐band electrochromic materials and smart windows, including configurations, operational mechanisms, and performance assessment parameters. In‐depth examination of potential dual‐band electrochromic materials and methods for achieving independent modulation is provided, along with an analysis of the challenges and potential solutions for performance and assembly issues. Finally, the future prospects of dual‐band electrochromic smart windows (ESWs) are underscored. The hope is to eventually facilitate the commercial application of these windows, which can significantly contribute to the creation of modern, energy‐efficient buildings.
Funder
National Natural Science Foundation of China
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献