Affiliation:
1. Key Laboratory for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High‐efficiency Display and Lighting Technology School of Materials Science and Engineering Henan University Kaifeng 475004 China
2. State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan 430070 China
Abstract
AbstractUnveiling the ion transport mechanism to design and explore efficient and stable ion transport pathways for high‐performance transition metal oxide (TMO)−based electrochromic materials is highly desired yet challenging. Herein, this study has demonstrated that the interlayer spacing of layered vanadium penoxide (V2O5) films can be tuned by inserting different amounts of lithium−ion (Li+) within host V2O5 material, as well as adjusting ion transport behavior and electrochromic performance. These results show that V2O5 with a small amount of ion insertion delivers a stable ion transport process and electrochromic properties. Increasing the amount of inserted Li+ will enlarge the interlayer spacing, which provides abundant active sites and efficient ion transport channels, and thus reversible and rich color variation of yellow−green−blue−olive green−orange is realized. Nevertheless, an excess of ion insertion results in the crystal structure collapse and cyclic stability degradation. These findings give a rationale for the evolution of electrochromic properties during different electrochemical reaction stages. This work provides considerable insight into the ion transport behavior within the layered V2O5 films, which gives fundamental theoretical guidance for developing and designing superior layered TMO electrochromic materials.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献