Carbon Dots Enabling Parts‐Per‐Billion Sensitive and Ultraselective Photoluminescence Lifetime‐Based Sensing of Inorganic Mercury

Author:

Zdražil Lukáš12ORCID,Panáček David1,Šedajová Veronika1,Baďura Zdeněk1,Langer Michal13ORCID,Medveď Miroslav14ORCID,Paloncýová Markéta1ORCID,Scheibe Magdalena1ORCID,Kalytchuk Sergii1ORCID,Zoppellaro Giorgio1ORCID,Kment Štěpán15ORCID,Cadranel Alejandro2ORCID,Bakandritsos Aristides15ORCID,Guldi Dirk M.2ORCID,Otyepka Michal16ORCID,Zbořil Radek15ORCID

Affiliation:

1. Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute (CATRIN) Palacký University Olomouc Šlechtitelů 241/27 Olomouc 783 71 Czech Republic

2. Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) Physical Chemistry I Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Egerlandstraße 3 91058 Erlangen Germany

3. Chemical and Biological Systems Simulation Lab Centre of New Technologies University of Warsaw 2c Banacha Street Warsaw 02–097 Poland

4. Department of Chemistry Faculty of Natural Sciences Matej Bel University Tajovského 40 Banská Bystrica 974 01 Slovak Republic

5. Nanotechnology Centre Centre for Energy and Environmental Technologies VŠB – Technical University of Ostrava 17. listopadu 2172/15 Ostrava‐Poruba 708 00 Czech Republic

6. IT4Innovations VŠB—Technical University of Ostrava 17. listopadu 2172/15 Ostrava‐Poruba 708 00 Czech Republic

Abstract

AbstractOne of the UN Sustainable Development Goals is to ensure universal access to clean drinking water. Among the various types of water contaminants, mercury (Hg) is considered to be one of the most dangerous ones. It is mostly its immense toxicity and vast environmental impact that stand out. To tackle the issue of monitoring water quality, a nanosensor based on carbon dots (CDs) is developed, whose surface is functionalized with carboxylic groups. CDs show Hg2+ concentration‐dependent photoluminescence (PL) lifetimes along with an ultrahigh sensitivity and selectivity. The selectivity of PL quenching by Hg2+ is rationalized by performing light‐induced electron paramagnetic resonance (LEPR) spectroscopy showing significant perturbation of the CD photoexcited state upon Hg2+ binding. The experimental findings are supported by time‐dependent density functional theory (TD‐DFT) calculations. These unveiled the emergence of a low‐lying charge transfer state involving a vacant 6s orbital of Hg2+ stabilized by relativistic effects.

Funder

Grantová Agentura České Republiky

Agentúra na Podporu Výskumu a Vývoja

European Regional Development Fund

European Cooperation in Science and Technology

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference96 articles.

1. Amyloid–carbon hybrid membranes for universal water purification

2. A History of Global Metal Pollution

3. Sustainable Development Knowledge Platform (United Nations) https://sustainabledevelopment.un.org(accessed: March 2022)

4. (WHO) Fact Sheet on Water: Key Facts Water and Health https://water.org/documents/223/FY22_Key_Water.org_facts.pdf(accessed: June 2022).

5. Recent Trends and Future Perspectives of Emergent Analytical Techniques for Mercury Sensing in Aquatic Environments

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3