Affiliation:
1. Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China
2. University of Chinese Academy of Sciences Beijing 100049 China
3. Chongqing School University of Chinese Academy of Sciences Chongqing 400714 China
4. School of Optoelectronic Engineering Chongqing University of Posts and Telecommunications Chongqing 400065 China
Abstract
AbstractLead sulfide (PbS), a classical narrow‐bandgap material, has manifested itself as a reliable choice for short‐wave infrared (SWIR) detection with high sensitivity. The primary efforts of optimizing PbS‐based photodetectors rely on discovering new low‐dimensional morphology and designing delicate device architecture, which may raise problems in the synergistic improvement of response speed, sensitivity, and response region. Herein, a graphene‐PbS nanocuboids‐graphene vertical photodetector is reported, fabricated by in situ electrochemical growth of monocrystalline PbS nanocuboids on graphene using an electrochemical technique. Under illumination, the surface states of PbS nanocuboids trap photogenerated holes and form a photovoltage, which widens the conductive region in the channel. This photogating effect contributes to the photocurrent and renders the device with high responsivity. Moreover, the highly crystalline PbS nanocuboids serve as excellent vertical channels, allowing a fast speed to be achieved. At room temperature, the device shows a responsivity of ≈130 A W−1 at 2700 nm, an external quantum efficiency of ≈6000%, a detectivity of 3 × 109 cm Hz1/2 W−1 (@1 kHz), and response/recovery speeds of 15/42 ms. This vertically integrated device, composed of PbS nanocuboids and graphene, offers a promising approach to complementary metal oxide semiconductor (CMOS)‐compatible SWIR detection, thus opening up an avenue to tailor device performance by exploiting the anisotropic morphology of nanomaterials.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献