Triplet Orbital Coupling: Achieving Ultralong Lifetime and Color Control in Upconversion Luminescence

Author:

Pu Guiqiang12,Wu Yiming3,Xu Duo12,Dai Shuheng4,Chen Qiushui4,Fang Manman5,Liu Xiaogang123ORCID,Li Zhen1567ORCID

Affiliation:

1. Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China

2. Department of Chemistry National University of Singapore 117543 Singapore Singapore

3. Institute of Materials Research and Engineering Agency for Science Technology and Research Singapore 138634 Singapore Singapore

4. MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry Fuzhou University 350025 Fuzhou China

5. Institute of Molecular Aggregation Science Tianjin University 300072 Tianjin China

6. Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University 300072 Tianjin China

7. Department of Chemistry Wuhan University 430072 Wuhan China

Abstract

AbstractLanthanide‐doped nanocrystals typically exhibit limited time‐gated nonlinear luminescence with microsecond lifetimes because of their parity‐forbidden 4f–4f transitions. Here the direct observation of ultralong‐lived upconversion luminescence by coupling molecular triplet orbitals to lanthanide‐doped nanocrystals is reported. Through careful manipulation of the molecular triplet states,  nanohybrids capable of producing ultralong upconversion lifetimes up to 1.37 s and tunable color output are constructed, surpassing the intrinsic lifetime of lanthanide ions by a factor of 4500. In addition to the exciton migration pathway from the 4f levels of lanthanide ions to the molecular singlet and then to triplet states, direct activation of the triplet state by exciton from the 4f levels is observed. This phenomenon significantly reduces the required photon energy (by more than 0.83 eV) for stimulation of the triplet state compared to the process involving intersystem crossing. Taking advantage of the unique properties of these nanohybrids, a pulsed laser‐pumped encryption system with enhanced security is developed by embedding additional passwords that contain information about pulse frequency and width. This work provides a new perspective on time‐resolved nonlinear luminescence with an ultrawide time dimension by engineering molecular triplet states.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3