Reflective Full‐Color Structural Colors with High Brightness and High Purity Based on Ge2Sb2Se4Te1 Chalcogenide Film

Author:

Duan Zhenzhen12,Chen Weijie12,He Zexiang12,Yang Jian12,Wang Dan12,Hu Zexiong12,Wang Ning12,Chen Nan12,Bu Yikun12ORCID

Affiliation:

1. School of Electronic Science and Engineering National Model Microelectronics College Xiamen University Fujian 361005 China

2. Fujian Key Laboratory of Ultrafast Laser Technology and Applications Xiamen University Xiamen 361005 China

Abstract

AbstractThis study proposes a general strategy for constructing an asymmetric Fabry–Perot structure based on an ultra‐thin composite absorber, Ni/Ge2Sb2Se4Te1, to produce reflective full‐color structural colors with high brightness and purity. The composite absorber effectively enhances the strong interference effect of thin film, which can significantly reduce the reflection bandwidth of the target band and the reflectivity of the non‐target band. Under the premise of optimizing the five‐layer base structure, full‐color structural colors can be tuned by only changing the thickness of the LaTiO3 layer. Using the ion‐assisted electron beam evaporation technique, a simple and efficient film deposition process, six color devices (namely red, orange, yellow, green, blue, and purple) are successfully prepared with reflection peaks exceeding 90%. The chromaticity coordinates of the proposed high‐purity red, green, and blue (RGB) samples are (0.554, 0.339), (0.280, 0.600), and (0.164, 0.075), respectively. These coordinates are fairly close to the standard RGB color coordinates used in liquid crystal displays. This device has a simple structure with a novel material combination and a low production cost, which makes it feasible for mass production using just one coating run process. It has excellent application potential in various fields such as micro‐nano displays, anti‐counterfeiting measures, reflective color filters, and decorations.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3