Strain Engineering of the Electronic States of Silicon‐Based Quantum Emitters

Author:

Ristori Andrea12,Khoury Mario3,Salvalaglio Marco45,Filippatos Angelos56ORCID,Amato Michele7,Herzig Tobias8,Meijer Jan8,Pezzagna Sebastien8,Hannani Drisse3,Bollani Monica9,Barri Chiara10,Ruiz Carmen M.3,Granchi Nicoletta12,Intonti Francesca12,Abbarchi Marco311ORCID,Biccari Francesco12

Affiliation:

1. European Laboratory for Non‐Linear Spectroscopy (LENS) Via N. Carrara 1 Sesto Fiorentino (FI) I‐50019 Italy

2. Department of Physics and Astronomy University of Florence Via G. Sansone 1 Sesto Fiorentino (FI) I‐50019 Italy

3. Aix Marseille Univ, CNRS Université de Toulon IM2NP, UMR 7334 Marseille F‐13397 France

4. Institute of Scientific Computing TU Dresden 01062 Dresden Germany

5. Dresden Center for Intelligent Materials (DCIM) TU Dresden 01062 Dresden Germany

6. Department of Mechanical Engineering & Aeronautics University of Patras Patras GR‐26504 Greece

7. Laboratoire de Physique des Solides Université Paris‐Saclay CNRS, Orsay Paris 91405 France

8. Division of Applied Quantum Systems, Felix‐Bloch Institute for Solid‐State Physics University Leipzig Linnéstrasse 5 04103 Leipzig Germany

9. Istituto di Fotonica e Nanotecnologie‐Consiglio Nazionale delle Ricerche Laboratory for Nanostructure Epitaxy and Spintronics on Silicon Via Anzani 42 Como 22100 Italy

10. L‐NESS, Dipartimento di Fisica Politecnico di Milano Como 20133 Italy

11. Solnil 95 Rue de la République Marseille 13002 France

Abstract

AbstractLight‐emitting complex defects in silicon have been considered a potential platform for quantum technologies based on spin and photon degrees of freedom working at telecom wavelengths. Their integration in complex devices is still in its infancy and has been mostly focused on light extraction and guiding. Here the control of the electronic states of carbon‐related impurities (G‐centers) is addressed via strain engineering. By embedding them in patches of silicon on insulator and topping them with SiN, symmetry breaking along [001] and [110] directions is demonstrated, resulting in a controlled splitting of the zero phonon line (ZPL), as accounted for by the piezospectroscopic theoretical framework. The splitting can be as large as 18 meV, and it is finely tuned by selecting patch size or by moving in different positions on the patch. Some of the split, strained ZPLs are almost fully polarized, and their overall intensity is enhanced up to 7 times with respect to the flat areas, whereas their recombination dynamics is slightly affected accounting for the lack of Purcell effect. This technique can be extended to other impurities and Si‐based devices such as suspended bridges, photonic crystal microcavities, Mie resonators, and integrated photonic circuits.

Funder

Agence Nationale de la Recherche

Fondazione Cassa di Risparmio di Firenze

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3