A‐site Cation Exchange Enables a High‐performance CsPbBr3 Photodetector for Laser Eavesdropping Systems

Author:

Zhang Jianqiang1,Pan Xiyan23,Sun Jie2,Zhou Hai4,Zhang Guoping1,Ding Liming2ORCID

Affiliation:

1. College of Physical Science and Technology Central China Normal University Wuhan 430079 China

2. Center for Excellence in Nanoscience (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing 100190 China

3. University of Chinese Academy of Sciences Beijing 100049 China

4. International School of Microelectronics Dongguan University of Technology Dongguan 523808 China

Abstract

AbstractOwing to the absence of organic cations, all‐inorganic perovskite exhibits superior thermal and irradiation stability compared to organic‐inorganic perovskite. However, it is difficult for the traditional solution method to produce pinhole‐free and phase‐pure all‐inorganic perovskite films, which hinders its application. Here, a method of in situ A‐site cation exchange to synthesize CsPbBr3 films is introduced. The MAPbBr3 films are treated with CsAc solution to initiate cation exchange, where the intermediate product MAAc plays a crucial role in guiding grain growth during evaporation, resulting in the production of pinhole‐free and phase‐pure CsPbBr3 films. The self‐powered photodetector, based on compact and pinhole‐free CsPbBr3 film, exhibits excellent performance with an LDR of 126.7 dB, a detectivity of 1.1 × 1013 Jones, and a rise/decay time of 2.9/25.1 µs. Furthermore, the photodetector maintains over 90% of its original performance after a 2500 s irradiation test and a 30‐day air exposure test. Benefiting from the exceptional device performance and stability, the photodetector proves to be a valuable component in the laser eavesdropping system.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3