Circularly Polarized Luminescence Switching, Chirality Self‐Sorting, and Cell Imaging of Chiral Rhodamine Dyes

Author:

Qu Lang1,Zhou Xueman2,Song Jintong1,Zhang Bao1,Yang Qingping1,Zhou Xiangge1,Liu Jin3,Xiang Haifeng1ORCID

Affiliation:

1. College of Chemistry Sichuan University Chengdu 610041 China

2. State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China

3. Lab for Aging Research State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu Sichuan 610041 China

Abstract

AbstractRhodamine dyes, as star molecules of fluorescent dyes, are critical tools in modern analytical and biochemical research. However, switching their chiroptical properties still remains a big challenge because of the absence of a suitable synthesis method to incorporate through conjugation a chiral fragment into the chromophore core of rhodamine. Herein, a simple and straightforward way is utilized to link two rhodamine chromophores by different chiral bridges. The conjugated RRR/SSS birhodamine dyes with one axial chirality, which is constructed directly by two rhodamine chromophores, and two spirocyclic chiralities show the interesting circular dichroism and circularly polarized luminescence switching and lysosome‐targetable properties. On the other hand, the unconjugated RR/SS birhodamine dyes with two chiral carbons do not have such chiroptical switching properties but do have different amazing cellular staining properties. The RR birhodamine dye can stain both lysosomes and mitochondria, but SS birhodamine dye can stain lysosomes only. Moreover, the mechanisms of chiroptical switching and diastereoselectivity are investigated as well, based on single‐crystal structures and density functional theory calculations. Therefore, a new platform is afforded here in designing chiral dyes for chiroptical switching and cell imaging applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3