Interference‐Assisted Independent Amplitude and Phase Manipulation with Broadband Chiral Meta‐Mirror

Author:

Qu Kai1ORCID,Chen Ke1ORCID,Hu Qi1,Yang Weixu1,Zhao Junming1,Jiang Tian1,Feng Yijun1

Affiliation:

1. School of Electronic Science and Engineering Nanjing University Nanjing 210023 China

Abstract

AbstractAchieving simultaneous amplitude and phase control is crucial in various spin‐selective optical applications, particularly for chiral mirrors that exhibit distinct responses when illuminated by orthogonal circularly polarized waves. However, conventional chiral metasurface approaches for amplitude manipulation can only be implemented by adjusting absorption, which limits the bandwidth due to the dispersion nature of the meta‐structure and cannot ensure that the chiral mirror output only one circular polarization component with independent amplitude and phase manipulation at multi‐polarization incidence. Here, an interference‐mechanism‐assisted methodology is proposed for broadband chiral meta‐mirrors with independent control over amplitude and phase. Such controls are achieved by simply setting the rotation angle of each meta‐atom in the integrated quad‐atom structure. The rotation angle of each meta‐atom and the difference between adjacent meta‐atoms rotation angles provide flexible degrees of freedom for controlling phase and amplitude, respectively. Notably, this mechanism stemming from the Pancharatnam‐Berry phase allows for wideband operation due to its dispersion‐free nature of phase control. As proof‐of‐principle demonstrations, numerically verify a series of amplitude‐tailorable phase‐gradient meta‐mirrors and experimentally demonstrate a broadband chiral Airy beam generator. This method offers a straightforward solution for spin‐selective amplitude/phase manipulation which may have the potential to advance the engineering application of chiral metasurfaces.

Funder

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

Fundamental Research Funds for the Central Universities

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3