Molecular Engineering Strategy for Flexible Organic Crystal Materials Integrating Low Temperature Elasticity and Optical Waveguide Properties Based on Bromo‐Hydroxy Chalcone Derivatives

Author:

Yang Guiyi1,Xin Haotian1,Liang Zhengang2,Zhang Yan1,Wang Lei1,Cheng Ziyi1,Zhao Songfang1,Liu Zhiqiang3,Cao Duxia1ORCID

Affiliation:

1. School of Materials Science and Engineering University of Jinan Jinan 250022 China

2. College of Chemistry and Chemical Engineering Qingdao University Qingdao 266071 China

3. State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China

Abstract

AbstractFlexible organic crystal materials with optical waveguide property have attracted much attention for various applications. Meanwhile, the rising demand for deep space and polar explorations have brought about a growing interest in materials with low temperature flexibility. However, the development of organic crystal materials integrating optical waveguide and low temperature elasticity remains a significant challenge. Here, three flexible organic crystals with bromo‐hydroxy chalcone backbone are developed via molecular engineering strategy. The 4BHIE crystal with 4‐bromo‐N‐ethyl substituent exhibits superior 2D elasticity under mechanical external forces with ≈180° bending and 1.30 mm of curvature. The low optical loss coefficient of only 0.309 dB mm−1 also demonstrates potential applications in flexible optoelectronic waveguides. Interestingly, the introduction of a longer alkyl chain onto N atom of indole moiety (4BHIB) exhibits more remarkable flexibility with 0.35 mm of curvature due to its richer and more complex network of intermolecular interactions compared with that of 4BHIE. Furthermore, 5BHIE crystal with 5‐bromo‐N‐ethyl substituent shows not only elasticity at room temperature but also low‐temperature elasticity in liquid nitrogen with reversible temperature response owing to the strengthening intermolecular interactions at low temperature. 5BHIE crystal displays potential optical waveguide application in low temperature environments.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3