Dynamic Fluorescent Metal–Organic Frameworks Utilizing a Flexible Saddle‐Like 3D Linker

Author:

Zhang Wei‐Miao1,Shen Zhan1,Wu Miaomiao1,Luo Xu‐Feng2ORCID,Su Jian13ORCID,Zhang Gen1

Affiliation:

1. School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China

2. College of Material Science and Chemical Engineering Ningbo University of Technology 201 Fenghua Road Ningbo 315211 P. R. China

3. State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210023 P. R. China

Abstract

AbstractDesigning single‐component fluorochromic metal–organic frameworks (MOFs) with multiple stages presents a significant challenge in the field of functional and smart MOFs. In this study, this challenge is successfully addressed by designing and synthesizing a novel ligand called cyclooctatetrathiophene‐tetrapyridine (COTTTP), and incorporating it into 3D MOFs known as Zn/Cd‐COTTTP. By exploiting the intrinsic properties of COTTTP, specifically its ability to undergo geometry changes from a bent form to a more planar form, both COTTTP as an individual molecule and the resulting Zn/Cd‐COTTTP MOFs exhibit similar fluorochromic behavior. This behavior manifests as a color change from yellow to orange to red. Characterization techniques such as single crystal X‐ray diffraction, Fourier transform infrared spectroscopy, solid‐state UV–vis and near‐infrared spectroscopy, and X‐ray photoelectron spectroscopy are employed to investigate and confirm the geometry change of COTTTP within the MOF structures. Furthermore, the introduction of an auxiliary rigid ligand to the system is explored, which effectively restricts the geometry change of COTTTP and subsequently diminishes the fluorochromic behavior. This work sheds new light on the design and application of smart porous materials, particularly in the realm of single‐component fluorochromic MOFs. The successful incorporation of COTTTP and the understanding of its geometry change provide insights into the development of functional and responsive MOFs for various applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Nanjing University of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3