Efficient, Multicolored, and Stable Room‐Temperature Phosphorescence Doped Materials Based on a Lead Halide Matrix: A Coordination‐Driven Doping Strategy

Author:

Zhang Bo‐Lun12ORCID,Zhang Pei‐Pei2,Ni Ai‐Yun2,Zhang Jian‐Jun12ORCID,Wang Hui‐Yu2,Feng Ke‐Xin2,Liu Shuqin2,Zhao Zongbin2ORCID,Duan Chunying3

Affiliation:

1. State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China

2. School of Chemical Engineering Dalian University of Technology Dalian 116024 China

3. Zhang Dayu College of Chemistry Dalian University of Technology Dalian 116024 China

Abstract

AbstractRoom temperature phosphorescence (RTP) materials have wide applications, and guest/host doping is an important method to achieve RTP. Although weak host–guest interactions (such as hydrogen bonding and ππ stacking) are considered to play a key role in inducing RTP in most doped systems (DSs), stronger and facile coordination bonds can achieve RTP more effectively and are believed to do so in DSs in related research. However, there is a lack of solid experimental evidence. Herein a new stable ligand‐modified lead halide (PCB) is synthesized and used as matrix to prepare RTP NA/PCB DSs with naphthalene derivatives (NA) as guests. Remarkably, a coordination bond between host and guest is experimentally demonstrated and revealed to play a decisive role in the generation of efficient RTP. On this basis, a coordination‐driven doping strategy is proposed to achieve efficient, multicolored, and long‐lived RTP of the DSs. In addition, NA/PCB shows excellent RTP stability and can be used in advanced security encryption, white light emitting diodes, and phosphorescent temperature sensors. This work not only proves the important role of coordination bonds in the RTP DSs, but also shows the potential of the ligand‐modified lead halide matrix as the host material of RTP.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3