Efficient PbSe Quantum Dot Infrared Photovoltaic Applying MXene Modified ZnO Electron Transport Layer

Author:

Liu Sisi1,Wang Meng1,Yu Xiong1,Li Hao1,Lu Haifei1,Wen Xiaoyan1,Li Ming‐Yu1,Zhang Jianbing234ORCID

Affiliation:

1. School of Science Wuhan University of Technology Wuhan Hubei 430070 China

2. School of Integrated Circuits Wuhan National Laboratory/or Optoelectronics (WNLO) Huazhong University of Science and Technology (HUST) Wuhan 430074 China

3. Wenzhou Advanced Manufacturing Technology Research Institute Huazhong University of Science and Technology Wenzhou 325035 China

4. Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518057 China

Abstract

AbstractInfrared (IR) solar cells are potential optoelectronic devices for boosting the power conversion efficiency (PCE) of conventional photovoltaics (such as pervoskite and silicon solar cells) by broadening the utilization range of the sunlight spectrum to short‐wavelength infrared region. PbSe colloidal quantum dots (QDs) are one of the optimal candidates for IR solar cells because of their tunable bandgap in the IR region and flexible solution processibility. At present, the best PbSe QD IR photovoltaics generally adopt ZnO as an electron transport layer (ETL). However, the intrinsic drawbacks and surface defects of ZnO can potentially deteriorate the PCE of devices. Herein, Ti3C2Tx, a representative 2D transition carbide, is combined with sol‐gel ZnO to develop a new hybrid ETL for fabricating high‐performance IR solar cells. This combination effectively suppresses the defects within ZnO by forming new bondings and simultaneously enhances the crystalline of ZnO film. Meanwhile, the introduction of Ti3C2Tx into ZnO film accelerates the transport and collection of photo‐generated carriers by constructing a new electron transport pathway. Consequently, compared to the bare devices, the infrared PCE of PbSe QD solar cells increases by 19.5% to 1.04%. These results demonstrate that this hybrid ETL can offer a bright approach for developing high‐performance optoelectronic devices.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Science, Technology and Innovation Commission of Shenzhen Municipality

National Key Research and Development Program of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3