Affiliation:
1. Research Center for Applied Sciences Academia Sinica Taipei 10608 Taiwan
2. Institute of Organic and Polymeric Materials National Taipei University of Technology Taipei 10608 Taiwan
Abstract
AbstractShort‐wave infrared (SWIR) photodetectors utilizing quantum dot (QD) material systems, harnessed through the quantum confinement effect to tune the absorption wavelength, offer an attractive avenue for the development of cost‐effective and solution‐processed photodetectors compared to the relatively expensive compound semiconductor photodetectors. However, the pores between the QDs and poor chemical stability after surface modification have impeded the practical application of quantum‐dot‐based photodetectors. In this study, high‐gain SWIR photodetector is demonstrated and achieved by incorporating PbS QD into the Cs2AgBiBr6 halide‐based double perovskite matrix, as confirmed by X‐ray diffraction, transmission electron microscope, and energy dispersive spectrometer. The thin film structure and detailed local structure are revealed by 2D grazing‐incidence wide and small‐angle X‐ray scattering. The resulting PbS@Cs2AgBiBr6‐based SWIR photodetector exhibits remarkable performance with a responsivity and detectivity of 15000 A W−1 and 1.31 × 1012 cm Hz1/2 W−1, respectively. This study offers valuable insights into the design of composite materials for high‐gain SWIR photodetectors.
Funder
Academia Sinica
National Synchrotron Radiation Research Center
National Science and Technology Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献