Deep generative model for probabilistic wind speed and wind power estimation at a wind farm
Author:
Affiliation:
1. Department of Mechanical Engineering Tokyo Institute of Technology Tokyo Japan
2. College of Atmospheric Science Chengdu University of Information Technology Chengdu China
Funder
National Natural Science Foundation of China
Publisher
Wiley
Subject
General Energy,Safety, Risk, Reliability and Quality
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ese3.1086
Reference66 articles.
1. Assessing the effect of wind power peaking characteristics on the maximum penetration level of wind power
2. A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting
3. Empirical error correction and feature identification for long term wind resource assessment using support vector regression
4. A review on hybrid empirical mode decomposition models for wind speed and wind power prediction;Bokde N;Energies,2019
5. Short-Term Wind Power Generation Forecasting: Direct Versus Indirect Arima-Based Approaches
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Improving wind speed forecasting at Adama wind farm II in Ethiopia through deep learning algorithms;Case Studies in Chemical and Environmental Engineering;2024-06
2. Multi-feature-fused generative neural network with Gaussian mixture for multi-step probabilistic wind speed prediction;Applied Energy;2024-04
3. Dependence structure learning and joint probabilistic forecasting of stochastic power grid variables;Applied Energy;2024-03
4. Generative deep learning for probabilistic streamflow forecasting: Conditional variational auto-encoder;Journal of Hydrology;2024-02
5. A novel spatial–temporal generative autoencoder for wind speed uncertainty forecasting;Energy;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3