Second‐order preserving point process permutations

Author:

Mohler George1ORCID,Mateu Jorge2

Affiliation:

1. Department of Computer Science Boston College Chestnut Hill MA USA

2. Department of Mathematics University Jaume I Castellon de la Plana Spain

Abstract

While random permutations of point processes are useful for generating counterfactuals in bivariate interaction tests, such permutations require that the underlying intensity be separable. In many real‐world datasets where clustering or inhibition is present, such an assumption does not hold. Here, we introduce a simple combinatorial optimization algorithm that generates second‐order preserving (SOP) point process permutations, for example, permutations of the times of events such that the function of the permuted process matches the function of the data. We apply the algorithm to synthetic data generated by a self‐exciting Hawkes process and a self‐avoiding point process, along with data from Los Angeles on earthquakes and arsons and data from Indianapolis on law enforcement drug seizures and overdoses. In all cases, we are able to generate a diverse sample of permuted point processes where the distribution of the functions closely matches that of the data. We then show how SOP point process permutations can be used in two applications: (1) bivariate Knox tests and (2) data augmentation to improve deep learning‐based space‐time forecasts.

Funder

Air Force Office of Scientific Research

Centers for Disease Control and Prevention

National Science Foundation

Ministerio de Ciencia y Tecnología

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference20 articles.

1. Pinpointing clusters of apparently sporadic cases of Legionnaires' disease.

2. Chen R. T. Q. Amos B. &Nickel M.(2020).Neural spatio‐temporal point processes. InInternational Conference on Learning Representations.

3. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns

4. Bivariate Cox Processes: Some Models for Bivariate Spatial Point Patterns

5. Flaxman S. R. Neill D. B. &Smola A.(2013).Correlates of homicide: New space/time interaction tests for spatiotemporal point processes.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3