Kinetics of the in vivo genotoxic and radioprotective effects of methyl gallate and epigallocatechin gallate

Author:

Cruz‐Vallejo Virginia1,Zarco‐Mendoza Anaís1,Morales‐Ramírez Pedro1

Affiliation:

1. Biology Department Instituto Nacional de Investigaciones Nucleares Mexico City Mexico

Abstract

AbstractThe aim of this study was to compare the kinetics of the in vivo action of equimolar doses of methyl gallate (MG) and epigallocatechin gallate (EGCG) on their capacity to induce DNA damage and to protect against DNA damage induced by 60Co gamma rays. DNA‐damaged cells were determined by single‐cell gel electrophoresis (comets) in murine peripheral blood leukocytes. The maximum radioprotective effects of MG and EGCG (approximately 70%) occurred at 15 min after administration when their effect was determined 2 min following irradiation. MG and EGCG have similar radioprotective indexes, which due to their fast response indicate that they are involved in free radical scavenging. Due to the similar radioprotective activities of MG and EGCG, the in vivo radioprotective effects of these agents do not seem to be dependent on the number of hydroxyl groups present in their structures but instead on the presence of the galloyl radical. EGCG induces an early, significant, and persistent increase in the number of DNA‐damaged cells and a later and more important increase in the number of damaged cells, suggesting that it has two mechanisms by which it can induce DNA damage. MG at the same molar dose as EGCG caused a significant and persistent increase in DNA damaged cells but to a much lesser extent to that induce by EGCG, suggesting that the galloyl radical is not involved in the mechanism of DNA breaks induction.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Genetics (clinical),Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3