Machine‐learning algorithms in screening for type 2 diabetes mellitus: Data from Fasa Adults Cohort Study

Author:

Karmand Hanieh1,Andishgar Aref2,Tabrizi Reza3ORCID,Sadeghi Alireza45,Pezeshki Babak6,Ravankhah Mahdi4,Taherifard Erfan45ORCID,Ahmadizar Fariba7

Affiliation:

1. Student Research Committee, School of Medicine Fasa University of Medical Sciences Fasa Iran

2. USERN Office Fasa University of Medical Sciences Fasa Iran

3. Noncommunicable Diseases Research Center Fasa University of Medical Science Fasa Iran

4. Student Research Committee, School of Medicine Shiraz University of Medical Sciences Shiraz Iran

5. Health Policy Research Center, School of Medicine Shiraz University of Medical Sciences Shiraz Iran

6. Clinical Research Development Unit, Valiasr Hospital Fasa University of Medical Sciences Fasa Iran

7. Data Science and Biostatistics Department Julius Global Health Utrecht The Netherlands

Abstract

AbstractIntroductionThe application of machine learning (ML) is increasingly growing in biomedical sciences. This study aimed to evaluate factors associated with type 2 diabetes mellitus (T2DM) and compare the performance of ML methods in identifying individuals with the disease in an Iranian setting.MethodsUsing the baseline data from Fasa Adult Cohort Study (FACS) and in a sex‐stratified manner, we studied factors associated with T2DM by applying seven different ML methods including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), K‐Nearest Neighbours (KNN), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGB) and Bagging classifier (BAG). We further compared the performance of these methods; for each algorithm, accuracy, precision, sensitivity, specificity, F1 score, and Area Under Curve (AUC) were calculated.Results10,112 participants were recruited between 2014 and 2016, of whom 1246 had T2DM at baseline. 4566 (45%) participants were males, aged between 35 and 70 years. For males, age, sugar consumption, and history of hospitalization were the most weighted variables regarding their importance in screening for T2DM using the GBM model, respectively; these variables were sugar consumption, urine blood, and age for females. GBM outperformed other models for both males and females with AUC of 0.75 (0.69–0.82) and 0.76 (0.71–0.80), and F1 score of 0.33 (0.27–0.39) and 0.42 (0.38–0.46), respectively. GBM also showed a sensitivity of 0.24 (0.19–0.29) and a specificity of 0.98 (0.96–1.0) in males and a sensitivity of 0.38 (0.34–0.42) and specificity of 0.92 (0.89–0.95) in females. Notably, close performance characteristics were detected among other ML models.ConclusionsGBM model might achieve better performance in screening for T2DM in a south Iranian population.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3