Fabrication of n‐p heterostructure of polyaniline–barium zirconate nanocomposites sensor device for the detection of diazomethane gas

Author:

Manjunatha S.1,Parveen Ameena2,Roy Aashis S.3ORCID

Affiliation:

1. Department of Physics SSA Government First Grade College Ballari India

2. Department of Physics Government Degree College Yadgir Karnataka India

3. Department of Chemistry S. S. Tegoor Degree College Gubbi Colony Karnataka India

Abstract

AbstractNanoparticles of barium zirconate were prepared by sol–gel method and used for the preparation of nanocomposites. Polyaniline fibers and its nanocomposites with barium zirconate were prepared by in‐situ polymerization at various percentages of 1 wt%, 2 wt%, 3 wt%, 4 wt%, and 5 wt%. The prepared polyaniline nanocomposites were subjected for determination functional group by FTIR spectra and XRD analysis. The surface morphology is important aspect of sensor studies, which is illustrated by SEM and TEM image. DC conductivity of the pristine PANI and its nanocomposites increases with increase in temperature up 200°C. It is evident that the increase in conductivity is due to the hopping of charge carriers from valence band to conduction band. Among all the nanocomposites, 3 wt% of polyaniline nanocomposite shows the high conductivity of 18.6 S/cm. It is also noted that 3 wt% polyaniline nanocomposites have a higher sensitivity of 86.2% at 300 ppm when compared with other compositions. This could be because of formation strong connections between the polyaniline fibers and nano‐oxide as a resulted of enhanced node connections, high surface area and porosity through optimized nanomaterials doping. The nanocomposites sensitivity restored in 89 s after the gas was removed, responding in 23 s at 300 ppm.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3