Affiliation:
1. Department of Applied Biology CSIR‐Indian Institute of Chemical Technology (IICT) Hyderabad Telangana India
2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
3. Department of Biotechnology National Institute of Pharmaceutical Education and Research, (NIPER) Ahmedabad Gujarat India
4. Department of Organic Synthesis & Process Chemistry CSIR‐Indian Institute of Chemical Technology (IICT) Hyderabad Telangana India
Abstract
AbstractPapillary thyroid carcinoma contributes to about 80% of the total thyroid cancer cases. BRAFV600E is a frequently occurring mutation in PTCs. Although several BRAF inhibitors are available, many thyroid cancer patients acquire resistance to BRAF inhibitors. Therefore, new targets and drugs need to be identified as therapies. Ferroptosis is a recently discovered type of cell death, and inhibiting glutathione peroxidase 4 (GPX4) using small molecules was found to trigger ferroptosis. But it is unknown whether inhibiting GPX4 renders thyroid cancer cells susceptible to ferroptosis. To identify novel GPX4 inhibitors, we focused on our previously reported cohort of diaryl ether and dibenzoxepine molecules. In this study, we asked whether diaryl ether and dibenzoxepine derivatives trigger ferroptosis in thyroid cancer cells. To answer this question, we screened diaryl ether and dibenzoxepine derivatives in cell‐based assays and performed mechanism of action studies. We found that a diaryl ether derivative, 16 decreased thyroid cell proliferation and triggered ferroptosis by inhibiting GPX4 expression levels. Molecular modeling and dynamics simulations showed that 16 binds to the active site of GPX4. Upon deciphering the mode of 16‐induced ferroptosis, we found that 16 treatments decrease mitochondrial polarization and reduce mitochondrial respiration similar to a ferroptosis inducer, RSL3. We conclude that the diaryl ether derivative, 16 inhibits GPX4 expression levels to induce ferroptosis in thyroid cancer cells. Based on our observations, we suggest that 16 can be lead‐optimized and developed as a ferroptosis‐inducing agent to treat thyroid cancers.
Funder
Indian Council of Medical Research
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献