Diaryl ether derivative inhibits GPX4 expression levels to induce ferroptosis in thyroid cancer cells

Author:

Pamarthy Deepika12,Behera Santosh Kumar3,Swain Sonam12,Yadav Sanjay24,Suresh Surisetti24,Jain Nishant12ORCID,Bhadra Manika Pal12

Affiliation:

1. Department of Applied Biology CSIR‐Indian Institute of Chemical Technology (IICT) Hyderabad Telangana India

2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India

3. Department of Biotechnology National Institute of Pharmaceutical Education and Research, (NIPER) Ahmedabad Gujarat India

4. Department of Organic Synthesis & Process Chemistry CSIR‐Indian Institute of Chemical Technology (IICT) Hyderabad Telangana India

Abstract

AbstractPapillary thyroid carcinoma contributes to about 80% of the total thyroid cancer cases. BRAFV600E is a frequently occurring mutation in PTCs. Although several BRAF inhibitors are available, many thyroid cancer patients acquire resistance to BRAF inhibitors. Therefore, new targets and drugs need to be identified as therapies. Ferroptosis is a recently discovered type of cell death, and inhibiting glutathione peroxidase 4 (GPX4) using small molecules was found to trigger ferroptosis. But it is unknown whether inhibiting GPX4 renders thyroid cancer cells susceptible to ferroptosis. To identify novel GPX4 inhibitors, we focused on our previously reported cohort of diaryl ether and dibenzoxepine molecules. In this study, we asked whether diaryl ether and dibenzoxepine derivatives trigger ferroptosis in thyroid cancer cells. To answer this question, we screened diaryl ether and dibenzoxepine derivatives in cell‐based assays and performed mechanism of action studies. We found that a diaryl ether derivative, 16 decreased thyroid cell proliferation and triggered ferroptosis by inhibiting GPX4 expression levels. Molecular modeling and dynamics simulations showed that 16 binds to the active site of GPX4. Upon deciphering the mode of 16‐induced ferroptosis, we found that 16 treatments decrease mitochondrial polarization and reduce mitochondrial respiration similar to a ferroptosis inducer, RSL3. We conclude that the diaryl ether derivative, 16 inhibits GPX4 expression levels to induce ferroptosis in thyroid cancer cells. Based on our observations, we suggest that 16 can be lead‐optimized and developed as a ferroptosis‐inducing agent to treat thyroid cancers.

Funder

Indian Council of Medical Research

Publisher

Wiley

Subject

Drug Discovery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3