Detection of oral cancer and oral potentially malignant disorders using artificial intelligence‐based image analysis

Author:

Kouketsu Atsumu1,Doi Chiaki2,Tanaka Hiroaki2,Araki Takashi2,Nakayama Rina2,Toyooka Tsuguyoshi2,Hiyama Satoshi2,Iikubo Masahiro3,Osaka Ken4,Sasaki Keiichi5,Nagai Hirokazu6,Sugiura Tsuyoshi1,Yamauchi Kensuke7,Kuroda Kanako17,Yanagisawa Yuta17,Miyashita Hitoshi18,Kajita Tomonari1,Iwama Ryosuke1,Kurobane Tsuyoshi1,Takahashi Tetsu17

Affiliation:

1. Division of Oral and Maxillofacial Oncology and Surgical Sciences, Department of Disease Management Dentistry Tohoku University Graduate School of Dentistry Sendai Japan

2. X‐Tech Development Department NTT Docomo Inc. Tokyo Japan

3. Division of Dental Informatics and Radiology Tohoku University Graduate School of Dentistry Sendai Japan

4. Department of International and Community Oral Health Tohoku University Graduate School of Dentistry Sendai Japan

5. Division of Dental and Digital Forensics Tohoku University Graduate School of Dentistry Sendai Japan

6. Department of Oral and Maxillofacial Surgery Sendai City Hospital Sendai Japan

7. Division of Oral and Maxillofacial Reconstructive Surgery, Department of Disease Management Dentistry Tohoku University Graduate School of Dentistry Sendai Japan

8. Department of Oral and Maxillofacial Surgery Tohoku Medical and Pharmaceutical University Hospital Sendai Japan

Abstract

AbstractBackgroundWe aimed to construct an artificial intelligence‐based model for detecting oral cancer and dysplastic leukoplakia using oral cavity images captured with a single‐lens reflex camera.Subjects and methodsWe used 1043 images of lesions from 424 patients with oral squamous cell carcinoma (OSCC), leukoplakia, and other oral mucosal diseases. An object detection model was constructed using a Single Shot Multibox Detector to detect oral diseases and their locations using images. The model was trained using 523 images of oral cancer, and its performance was evaluated using images of oral cancer (n = 66), leukoplakia (n = 49), and other oral diseases (n = 405).ResultsFor the detection of only OSCC versus OSCC and leukoplakia, the model demonstrated a sensitivity of 93.9% versus 83.7%, a negative predictive value of 98.8% versus 94.5%, and a specificity of 81.2% versus 81.2%.ConclusionsOur proposed model is a potential diagnostic tool for oral diseases.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3