Large‐Area Electrode Deposition and Patterning for Monolayer Organic Field‐Effect Transistors by Vacuum‐Filtrated MXene

Author:

Guo Yifan1,Li Keqiao2,Zou Deng13,Li Yang2,Yan Lizhi1,He Zhenfei1,Zou Tao13,Huang Baoling2,Chan Paddy Kwok Leung13ORCID

Affiliation:

1. Department of Mechanical Engineering The University of Hong Kong Pokfulam Hong Kong 999077 China

2. Department of Mechanical and Aerospace Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China

3. Advanced Biomedical Instrumentation Centre Hong Kong Science Park Shatin New Territories Hong Kong 999077 China

Abstract

AbstractHigh‐quality organic field‐effect transistors (1L‐OFETs) based on monolayers have made significant progress and are expected to be key components in the development of next‐generation flexible electronics. However, a flexible, low‐cost, damage‐free, and metallic conductance electrode that can accurately demonstrate the exceptional electrical properties of 1L‐OFETs is still in high demand. In this study, the vacuum‐filtrated MXene (Ti3C2Tx) is demonstrated to serve as electrodes without causing chemical or thermal damage to the delicate active layer via a dry‐lithography method. By integrating monolayer 2,9‐didecyldinaphtho[2,3‐b:2,3′‐f]thieno[3,2‐b]thiophene (C10‐DNTT) with MXene, the 1L‐OFETs exhibit a low subthreshold swing of 60.7 mV per decade and high field‐effect mobility of 9.5 cm2 V−1 s−1 on a high‐κ dielectric hafnium oxide. The use of MXene electrodes enables the production of solution‐processed conductors that can achieve uncompromised performance compared to metal contacts. Furthermore, owing to the well‐matched work functions, the contact resistance can be reduced to 165 Ω cm by this printing technique. The 1L‐OFETs fabricated on an ultra‐thin conformal parylene substrate also exhibit uniform electrical properties. It is believed that this processing approach of vacuum‐filtrated MXene conductors is a crucial step toward the application of non‐metal contacts for high‐performance flexible electronics.

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3