Affiliation:
1. School of Integrated Circuits Peking University Beijing 100871 China
2. Center for Brain Inspired Chips Institute for Artificial Intelligence Peking University Beijing 100871 China
3. School of Electronic and Computer Engineering Peking University Shenzhen 518055 China
4. Center for Brain Inspired Intelligence Chinese Institute for Brain Research (CIBR) Beijing 102206 China
Abstract
AbstractHumans are complex organisms made by millions of physiological systems. Therefore, physiological activities can represent physical or mental states of the human body. Physiological signal processing is essential in monitoring human physiological features. For example, non‐invasive electroencephalography (EEG) signals can be used to reconstruct brain consciousness and detect eye movements for identity verification. However, physiological signal processing requires high resolution, high sensitivity, fast responses, and low power consumption, hindering practical hardware design for physiological signal processing. The bionic capability of memristor devices is very promising in the context of building physiological signal processing hardware and they have demonstrated a handful of advantages over the traditional Von Neumann architecture system in accelerating neural networks. Memristor networks can be integrated as a hardware system for physiological signal processing that can deliver higher energy efficiency and lower latency compared to traditional implementations. This review paper first introduces memristor characteristics, followed by a comprehensive literature study of memristor‐based networks. Physiology signal processing applications enabled by these integrated memristor networks are also presented in this review. In summary, this paper aims to provide a new perspective on physiological signal processing using integrated memristor networks.
Funder
National Natural Science Foundation of China
Higher Education Discipline Innovation Project
Subject
Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献