Effect of Residual Carbon on Spin‐Polarized Coupling at a Graphene/Ferromagnet Interface

Author:

Jugovac Matteo123ORCID,Cojocariu Iulia12,Genuzio Francesca1,Bigi Chiara4,Mondal Debashis45,Vobornik Ivana4,Fujii Jun4,Moras Paolo3,Feyer Vitaliy2,Locatelli Andrea1,Menteş Tevfik Onur1

Affiliation:

1. Elettra – Sincrotrone Trieste S.C.p.A. S.S. 14 km 163.5 34149 Trieste Italy

2. Peter Grünberg Institute (PGI‐6) Forschungszentrum Jülich GmbH 52425 Jülich Germany

3. Istituto di Struttura della Materia‐CNR (ISM‐CNR) 34149 Trieste Italy

4. Istituto Officina dei Materiali IOM‐CNR Laboratorio TASC 34149 Trieste Italy

5. International Centre for Theoretical Physics (ICTP) Strada Costiera 11 34100 Trieste Italy

Abstract

AbstractVertical stacks of graphene and ferromagnetic layers are predicted to be efficient spin filters, while the experimentally observed figures of merit systematically remain below the theoretical predictions. According to general consensus, a vaguely defined interface contamination is found responsible for this discrepancy. Here, it is demonstrated how the spin‐polarized electronic structure of single‐layer graphene supported on a ferromagnetic cobalt substrate is affected by the presence of an interfacial carbidic buffer layer, formed by residual carbon present in the Co substrate. It is found that the Co‐C hybridized single‐spin state near the Fermi level disappears upon thermal segregation of bulk carbon at the graphene–Co interface, which determines the electronic decoupling of graphene from the ferromagnetic support and consequently, the suppression of net spin polarization. These observations are shown to be independent of the graphene azimuthal orientation with respect to the high symmetry directions of the substrate. The findings provide clear evidence that the realization of highly polarized spin currents in graphene/ferromagnet heterostacks depends on careful control of the graphene growth process in order to eliminate interfacial carbon.

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3