Nanoscale Quantized Oscillations in Thin‐Film Growth Greatly Enhance Transconductance in Organic Transistors

Author:

Drakopoulou Sofia12,Murgia Mauro34,Albonetti Cristiano4,Benaglia Simone5,Borgatti Francesco4,Di Lauro Michele3,Bianchi Michele13,Greco Pierpaolo36,Papo David36,Garcia Ricardo5,Alessandrini Andrea2,Biscarini Fabio13ORCID

Affiliation:

1. Dipartimento di Scienze della Vita Università di Modena e Reggio Emilia Via Campi 103 Modena 41125 Italy

2. Dipartimento di Fisica Informatica e Matematica Università di Modena e Reggio Emilia Via Campi 213/a Modena 41125 Italy

3. Center for Translational Neurophysiology Istituto Italiano di Tecnologia Via Fossato di Mortara 17–19 Ferrara 44100 Italy

4. CNR–ISMN Institute for Nanostructured Materials Via P. Gobetti 101 Bologna I‐40129 Italy

5. Instituto de Ciencia de Materiales de Madrid (ICMM) CSIC Madrid 28049 Spain

6. Sezione di Fisiologia Umana Università di Ferrara via Fossato di Mortara 19 Ferrara 44121 Italy

Abstract

AbstractA growth mode of pentacene thin films deposited by high vacuum sublimation where the morphology versus thickness h “rings” back and forth between rough 3D films with pyramid islands and smooth 2D films with ziqqurat islands is discovered. The roughness σ versus h exhibits seamless coherent oscillations whose amplitude and wavelength increase as integer multiples of 1.5 ML thickness. The quantized oscillations are reconducted to dynamic wetting/dewetting transitions involving the upper layers of pentacene film. Importantly, the transconductance of organic field effect transistors, either in solid state or electrolyte‐gated, exhibits antiphase oscillations with one‐decade swing. Charge mobilities in the wetting regime reach 0.1 cm2 V−1 s−1, in line with high‐end values reported for thin‐film pentacene transistors. Controlling this growth mode enables the limitations of charge transport imposed by the roughening transition to be overcome, a universal feature of high vacuum growth to date.

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3