Multi‐Functional Spin Photogalvanic Device Based on 2D Half‐Metallic Ferromagnets

Author:

Fu Zhentao12ORCID,Yan Pinglan12,Li Jin12,He Chaoyu12,Ouyang Tao12,Tang Chao12,Zhong Jianxin1

Affiliation:

1. Hunan Provincial Key Laboratory for Condensed Matter Computational Science and Materials Quantum Engineering Hunan 411105 P. R. China

2. School of Physics and Optoelectronics Xiangtan University Hunan 411105 P. R. China

Abstract

AbstractGenerating fully spin‐polarized currents (FSPC) and pure spin currents (PSC) are of great importance for spintronics. Half‐metallic ferromagnets, which generate 100% spin polarization, are considered as one of the most promising materials for applications in spintronics. However, the knowledge of intrinsic half‐metallic materials in the spin‐dependent photogalvanic effect is still poorly understood. Using first‐principle transport calculations, a robust approach is introduced to obtain FSPC and PSC by spin‐dependent photogalvanic effect in intrinsic half‐metallic materials. Based on the recently synthesized monolayer half‐metallic C(CN)3, a 2D spin photogalvanic device is built and it is demonstrated that the FSPC can be achieved in a wider photon energy range under both linearly and elliptically polarized light due to the half‐metallicity. It is intriguing to note that the device can be easily manipulated to transition between two modes: one for generating FSPC and another for generating PSC by setting the two leads in anti‐parallel configurations. Furthermore, a significant spin‐valve effect can be attained across various photon energies for both linearly and elliptically polarized light. The research shows that half‐metallic materials are an ideal platform for studying and generating FSPC and PSC, which presents a remarkable avenue for the development of advanced spintronic devices in the next generation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Program for Changjiang Scholars and Innovative Research Team in University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3