Oxygen Vacancies Mediated Co‐Sputtered Ti‐Doped BiVO4 Thin Films‐Based Transparent Photovoltaic Device

Author:

Ghosh Shuvaraj12,Patel Malkeshkumar12,Choi Hyeon‐Gyu2,Youn Sung‐Min3,Jeong Chaehwan3,Kim Joondong12ORCID

Affiliation:

1. Photoelectric and Energy Device Application Lab (PEDAL) Multidisciplinary Core Institute for Future Energies (MCIFE) Incheon National University Incheon 22012 Republic of Korea

2. Department of Electrical Engineering Incheon National University 119 Academy Rd. Yeonsu Incheon 22012 Republic of Korea

3. Green Energy & Nano Technology R&D Group Korea Institute of Industrial Technology Gwangju 61012 Republic of Korea

Abstract

AbstractBiVO4, a narrow bandgap material (2.5 eV), has been widely explored for photocatalytic applications, but its applications in the optoelectronic field are unexplored. This work explores BiVO4 for photovoltaic devices using the oxygen vacancies mediated co‐sputtered Ti‐doped BiVO4 (Ti:BiVO4) that exhibits on‐site power production by photovoltaics and see‐through features. The structural, chemical, and optical properties of Ti:BiVO4 are investigated for heterojunction formation with p‐type NiO film. The sputtering power of Ti plays a significant role in improving the light absorption capability by increasing oxygen vacancy concentration, enhancing the device performance. The devices show an open‐circuit voltage value of 676 mV and a short‐circuit current density value of 4.83 mA cm−2 with a maximum power production value of 122.2 µW under UV illumination of intensity 53.1 mW cm−2. The obtained device performances correlate with the Ti dopant's deposition power that tunes the structural and optical properties of BiVO4 films. Moreover, in self‐powered mode, the fabricated devices show a fast photoresponse speed of 0.8 ms with a high detectivity value of 2.22 × 1012 Jones. This work establishes the suitability of co‐sputtered Ti:BiVO4 for the next generation of transparent self‐powered optoelectronic devices.

Funder

National Research Foundation

Ministry of Science and ICT, South Korea

Korea Institute of Industrial Technology

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3