Highly Sensitive Piezoelectric E‐Skin Design Based on Electromechanical Coupling Concept

Author:

Yang Xiaopeng1ORCID,Zhang Menglun1ORCID,Xie Mengying1,Sun Mingchao1,Luo Hexu1,Li Quanning1,Chen Xuejiao1,Pang Wei1

Affiliation:

1. State Key Laboratory of Precision Measuring Technology and Instruments Tianjin University Tianjin 300072 China

Abstract

AbstractStretchable electronic skin (e‐skin) paves the way for applications that exceed the scope of intrinsic rigid devices and hard‐to‐stretch sensors. The broad application range of flexible e‐skins benefits from device architectures that can simultaneously provide mechanical flexibility and superior sensitivity. Classic fractal design provides a simple architecture to achieve the desired flexibility through structural design for improved wear comfort, but at the expense of sensor sensitivity. In this study, the proposed method addresses the trade‐off between stretchability and sensitivity in fractal design. A high‐sensitivity e‐skin is obtained by eliminating the effect of negative charge on the output by applying the concept of electromechanical coupling. This concept for designing e‐skins with high sensitivity is validated through the delicate patterning of hard‐to‐stretch functional materials. Further, human speech signals are acquired through the integration of e‐skin with signal processing circuits, and speech pattern recognition is realized using machine learning. The stretchable e‐skin with an enhanced gauge factor illustrates the wider application of this concept for improving the sensitivity of stretchable electronic functional materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3