Ion Migration and Space‐Charge Zones in Metal Halide Perovskites Through Short‐Circuit Transient Current and Numerical Simulations

Author:

Alvarez Agustin O.12ORCID,García‐Batlle Marisé13ORCID,Lédée Ferdinand4ORCID,Gros‐Daillon Eric4ORCID,Guillén Javier Mayén4ORCID,Verilhac Jean‐Marie5ORCID,Lemercier Thibault6ORCID,Zaccaro Julien6ORCID,Marsal Lluis F.7ORCID,Almora Osbel7ORCID,Garcia‐Belmonte Germà1ORCID

Affiliation:

1. Institute of Advanced Materials Universitat Jaume I Castelló 12071 Spain

2. Center for Nanophotonics AMOLF Science Park 104 Amsterdam 1098 XG The Netherlands

3. University of North Carolina at Chapel Hill NC 27599 USA

4. Univ. Grenoble Alpes CEA Leti F38000 Grenoble France

5. Univ. Grenoble Alpes CEA Liten F38000 Grenoble France

6. Univ. Grenoble Alpes CNRS Grenoble INP Institut Néel Grenoble F38042 France

7. Department of Electronic Electric and Automatic Engineering Universitat Rovira i Virgili Tarragona 43007 Spain

Abstract

AbstractThe inherent ion migration in metal halide perovskite materials is known to induce deleterious and highly unstable dark currents in X‐ and γ‐ray detectors based on those compounds upon bias application. Dark current slow drift with time is identified as one of the major drawbacks for these devices to satisfy industrial requirements. Because dark current establishes the detectability limit, current evolution, and eventual growth may mask photocurrent signals produced by incoming X‐ray photons. Relevant information for detector assessment is ion‐related parameters such as ion concentration, ion mobility, and ionic space‐charge zones that are eventually built near the outer contacts upon detector biasing. A combined experimental (simple measurement of dark current transients) and 1D numerical simulation method is followed here using single‐crystal and microcrystalline millimeter‐thick methylammonium‐lead bromide that allows extracting ion mobility within the range of µion  ≈ 10−7 cm2 V−1 s−1, while ion concentration values approximate Nion ≈ 1015 cm−3, depending on the perovskite crystallinity.

Funder

Agencia Estatal de Investigación

Horizon 2020 Framework Programme

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3