Back‐End‐of‐Line Integration of Synaptic Weights using HfO2/ZrO2 Nanolaminates

Author:

Bégon‐Lours Laura12ORCID,Slesazeck Stefan3ORCID,Falcone Donato Francesco1,Havel Viktor3,Hamming‐Green Ruben14,Fernandez Marina Martinez1,Morabito Elisabetta1ORCID,Mikolajick Thomas35ORCID,Offrein Bert Jan1ORCID

Affiliation:

1. Dept. of Science of Quantum and Information Technology IBM Research Europe – Zurich Research Laboratory Rüschlikon 8803 Switzerland

2. Dept. of Information Technology and Electrical Engineering Integrated Systems Laboratory ETH Zurich Zurich 8092 Switzerland

3. Namlab Gmbh 01187 Dresden Germany

4. Zernike Institute for Advanced Materials University of Groningen Groningen AG 9747 The Netherlands

5. Institute of Semiconductors and Microsystems Technische Universität Dresden 01062 Dresden Germany

Abstract

AbstractIn artificial neural networks, the “synaptic weights” connecting the neurons are adjusted during the training. Beyond silicon, functionalizing the back‐end‐of‐line (BEOL) of CMOS circuits with novel materials is a key enabler for deploying neural network accelerators. The hardware implementation of the synaptic weights requires linear and reprogrammable resistive elements. In ferroelectric tunnel junctions, the resistance is programmed by controlling the configuration of the ferroelectric domains with electrical pulses. From ferroelectric HfZrO4 to HfO2–ZrO2 nanolaminates (NL), the crystallization temperature lowers below the upper limit of 400 °C required for CMOS BEOL. The device footprint is reduced, and the maximum‐to‐minimum conductance ratio increases from 7 to 32. Operated with pulses in the ultra‐fast (20 ns) and biological (500 µs) timescales, the synaptic plasticity exhibits several regimes. Dynamic hysteresis mode characterization after up to 1011 switching cycles indicates the coexistence of ferroelectric and non‐ferroelectric effects such as defect rearrangement. Temperature‐dependent transport measurements in the Ohmic (linear) regime support these conclusions. Multi‐level resistive switching is achieved in HfO2–ZrO2 NL co‐integrated to CMOS in the BEOL. 1T‐1R operation is demonstrated, paving the way for hardware implementation of synaptic weights for in‐memory neuromorphic computing.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3