Extremely Sensitive Wearable Strain Sensor with Wide Range Based on a Simple Parallel Connection Architecture

Author:

Teng Fu‐Rui1,Zi Tao‐Qing1,Fang Jia‐Bin1,Liu Chang1,Wu Di1,Li Ai‐Dong1ORCID

Affiliation:

1. National Laboratory of Solid State Microstructures Department of Materials Science and Engineering College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 People's Republic of China

Abstract

AbstractStrain sensors have attracted tremendous attention in healthcare monitoring and human–computer interaction due to their great potential in intelligent equipment. However, conventional strain sensors cannot possess high sensitivity, wide stretchable range, and low limit of detection (LoD) at the same time. Here, an ultrasensitive wearable strain sensor over a broad range based on the simple parallel connection architecture of Ir‐nanoparticles‐modified carbon nanotubes (Ir NPs@CNTs) and two Pt layers using a reticular patterned polymer substrate (Dragon Skin 30, (DS)) is reported. It exhibits an extremely high gauge factor of 13 590, broader strain range up to 98%, lower LoD of 0.02% strain, faster response time of 134 ms, and long‐term durability above 18 000 cycles. The mechanisms of performance improvement are proposed based on the synergistic and hierarchical effects of the combined sandwich structures by parallel connection on patterned DS, including geometric effect, crack formation/propagation in parallel grooves, and tunneling‐based charge carriers between IrNPs and IrNPs/CNTs. By introducing a metal nanolayer, the sensor also shows heat sensitivity at various environmental temperatures. The wearable sensors have been utilized for human‐motion detection with improved comprehensive performance, indicating their promising applications in flexible electronics and artificial intelligent fields.

Funder

National Natural Science Foundation of China

Government of Jiangsu Province

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flexible Sensors with a Multilayer Interlaced Tunnel Architecture for Distinguishing Different Strains;ACS Applied Materials & Interfaces;2023-12-04

2. Human Identification Based on Gaits Analysis Using Sensors-Based Data Bands;2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT);2023-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3