Affiliation:
1. Department of Mechanical and Materials Engineering University of Nebraska‐Lincoln 900 N 16th Street, W342 NH Lincoln NE 68588 USA
2. Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience University of Nebraska‐Lincoln 855 N 16th Street Lincoln NE 68588 USA
Abstract
AbstractRare‐earth iron garnets have distinctive spin‐wave (SW) properties such as low magnetic damping and long SW coherence length making them ideal candidates for magnonics. Among them, thulium iron garnet (TmIG) is a ferrimagnetic insulator with unique magnetic properties including perpendicular magnetic anisotropy (PMA) and topological hall effect at room temperature when grown down to a few nanometers, extending its application to magnon spintronics. Here, the SW propagation properties of TmIG films (thickness of 7–34 nm) grown on GGG and sGGG substrates are studied at room temperature. Magnetic measurements show in‐plane magnetic anisotropy for TmIG films grown on GGG and out‐of‐plane magnetic anisotropy for films grown on sGGG substrates with PMA. SW electrical transmission spectroscopy measurements on TmIG/GGG films unveil magnetostatic surface spin waves (MSSWs) propagating up to 80 µm with a SW group velocity of 2–8 km s−1. Intriguingly, these MSSWs exhibit nonreciprocal propagation, opening new applications in SW functional devices. TmIG films grown on sGGG substrates exhibit forward volume spin waves with a reciprocal propagation behavior up to 32 µm.
Funder
National Science Foundation