Perovskite Solar Module: Promise and Challenges in Efficiency, Meta‐Stability, and Operational Lifetime

Author:

Le Thanh‐Hai1ORCID,Driscoll Honora1,Hou Cheng‐Hung1,Montgomery Angelique2,Li Wayne3,Stein Joshua S.2,Nie Wanyi1ORCID

Affiliation:

1. Center for Integrated Nanotechnologies Los Alamos National Laboratory Los Alamos NM 87545 USA

2. Sandia National Laboratories Albuquerque NM 87123 USA

3. Electric Power Research Institute (EPRI) Palo Alto CA 94304 USA

Abstract

AbstractPerovskite photovoltaics (PVs) are an emerging solar energy generation technology that is nearing commercialization. Despite the unprecedented progress in increasing power conversion efficiency (PCE) for perovskite solar cells (PSCs), up‐scaling lab‐made cells to solar modules remains a challenge. In this work, the recent progress of making perovskite mini‐modules is reviewed. In particular, a database summarizing the module size, performance, hysteresis, and operational lifetimes reported in the literature is built. After analyzing the performance losses from scaling PSCs to mini‐modules based on the data collected from the literature, the current key to high‐performance perovskite mini‐modules is found to be the coating method optimization. If the perovskite layer quality is well reserved, a >24% mini‐module efficiency is projected by only considering the losses from lateral resistivity and laser scribing area. Next, performance characteristics are explored including hysteresis and meta‐stable power outputs that must be overcome to correctly characterize perovskite modules. Finally, current challenges associated with the long‐term stability of perovskite modules are examined and the importance of such durability for commercialization is discussed. It is hoped that the findings in this review provide a bridge for the development of perovskite modules that will lead to commercialization in the near future.

Funder

Office of Energy Efficiency and Renewable Energy

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

Reference141 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3