Short‐Term and Long‐Term Memory Functionality of a Brain‐Like Device Built from Nanoparticle Atomic Switch Networks

Author:

Srikimkaew Oradee12ORCID,Azhari Saman34ORCID,Banerjee Deep13ORCID,Usami Yuki13ORCID,Tanaka Hirofumi135ORCID

Affiliation:

1. Graduate School of Life Science and Systems Engineering Kyushu Institute of Technology (Kyutech) 2–4 Hibikino, Wakamatsu Kitakyushu 808‐0196 Japan

2. Futuristic Science Research Center School of Science Walailak University Nakhon Si Thammarat 80160 Thailand

3. Research Center for Neuromorphic AI Hardware Kyushu Institute of Technology (Kyutech) 2–4 Hibikino Wakamatsu Kitakyushu 808‐0196 Japan

4. Graduate School of Information Production and Systems Waseda University 2–7 Hibikino, Wakamatsu Kitakyushu Fukuoka 808‐0135 Japan

5. Institute of Science Suranaree University of Technology Nakhon Ratchasima 30000 Thailand

Abstract

AbstractThe synaptic plasticity of the Ag‐Ag2S nanoparticle‐based volatile memristor system is demonstrated. The nanoparticles self‐assemble into a network with over 103 interconnected atomic switch interfaces. Short‐term plasticity is identified by spontaneous conductance relaxation, attributed to the memristor's volatility. The conductance of the network is enhanced when a subsequent stimulus pulse arrives shortly after the previous one, analogous to the paired‐pulse facilitation in biological synapses. Furthermore, repeated pulse stimulation is used to achieve the transition from short‐term plasticity to long‐term potentiation, a process related to learning and memory formation. Remarkably, the result reveals that the lifetime of long‐term potentiation for 100‐pulse stimulation is 40 min, indicating that the device can forget newly acquired information after prolonged storage, akin to human memories. The findings provide insight into the the learning and memory abilities of atomic switch network memristors, facilitating the development of hardware‐implemented artificial neural networks.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Science and Technology Agency

Walailak University

Thailand Science Research and Innovation

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3