Computational Design of 2D Phosphorus Nanostructures for Renewable Energy Applications: A Review

Author:

Er Chen‐Chen12ORCID,Fung Cheng‐May1,Chong Wei‐Kean1,Lee Yong Jieh1,Tan Lling‐Lling1,Ang Yee Sin2ORCID,Medhekar Nikhil V.3,Chai Siang‐Piao1ORCID

Affiliation:

1. Multidisciplinary Platform of Advanced Engineering Chemical Engineering Discipline School of Engineering Monash University Jalan Lagoon Selatan, Bandar Sunway Subang Jaya Selangor 47500 Malaysia

2. Science, Mathematics and Technology (SMT) Cluster Singapore University of Technology and Design (SUTD) 8 Somapah Road Singapore 487372 Singapore

3. Departments of Materials Science and Engineering Faculty of Engineering Monash University Clayton Victoria 3800 Australia

Abstract

AbstractElemental phosphorus in its various allotropes has received tremendous research attention recently due to its intriguing electronic and structural properties. Notably, the application of nanostructured materials to overcome the inherent flaws in bulk materials is promising. However, many challenges need to be addressed before its widespread implementation. Thus, a specific tenet to design novel and robust nanomaterials is a decisive factor in the desired outcome, and the most daunting task before realizing this is solving the Schrödinger equation. First principle density functional theory (DFT) calculations have emerged as an insightful and accurate design tool to investigate the structural, electronic, and possible synthesis scenarios of yet undiscovered materials at atomic levels. In this review, the basic principles and the importance of DFT are discussed, followed by a summary of recent advances in the first principle study of elemental phosphorus‐based nanomaterials. Elemental phosphorus‐based nanomaterials and their allotropes have attracted growing interest in the renewable energy community due to their modulable product selectivity. However, the understanding of the physical phenomena of allotropic modification is still lacking. Therefore, the aim is to motivate experimental researchers to conduct DFT studies and experiments to comprehend relevant engineered nanomaterials better. Finally, the challenges and potential future research directions for further theoretical and computational development of phosphorus‐based nanomaterials are outlined.

Funder

Monash University Malaysia

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3