Oxide‐Based Electrolyte‐Gated Transistors with Stable and Tunable Relaxation Responses for Deep Time‐Delayed Reservoir Computing

Author:

Fang Renrui12,Wang Shaocong3,Zhang Woyu12,Ren Kuan3,Sun Wenxuan12,Wang Fei12,Lai Jinru1,Zhang Peiwen1,Xu Xiaoxin12,Luo Qing12,Li Ling12,Wang Zhongrui3,Shang Dashan12ORCID

Affiliation:

1. Laboratory of Microelectronic Devices & Integrated Technology Institute of Microelectronics of the Chinese Academy of Sciences Beijing 100029 China

2. University of Chinese Academy of Sciences Beijing 101408 China

3. Department of Electrical and Electronic Engineering The University of Hong Kong Pok Fu Lam Road Hong Kong 999077 China

Abstract

AbstractTime‐delayed reservoir computing with marked strengths of friendly hardware implementation and low training cost is regarded as a promising solution to realize time and energy‐efficient time series information processing and thus receives growing attention. However, achieving a sufficient number of reproducible reservoir states remains a significant challenge, which severely limits its computing performance. Here, an electric‐double‐layer‐coupled oxide‐based electrolyte‐gated transistor with a shared gate and varying channel lengths is developed to construct a deep time‐delayed reservoir computing system. A variety of short‐term synaptic responses related to inherent ion‐electron‐coupled dynamics at the electrolyte/channel interface are demonstrated, reflecting a flexibly regulable channel current. Different stable and tunable relaxation responses corresponding to varying channel lengths are obtained to enrich reservoir states combined with virtual nodes ways. The spoken‐digit classification and Hénon map prediction tasks are implemented with high accuracy (≈92.2%) and ultralow normalized root mean square error (≈0.013), respectively, validating the significant improvement of the computing performance by introducing additional relaxation responses. This work opens a promising pathway in exploiting oxide‐based electrolyte‐gated transistors for realizing temporal information processing hardware systems.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3